





Digital Solutions for a Bio-Based Future: Empowering Industry and Consumers

## WEBINAR BIORADAR DIGITAL 8<sup>th</sup> April 2025 PLATFORM TOOLS



**Dr. David F. Nettleton.** Al/Digital Twin/DSS lead at IRIS Technology Solutions

准 IRIS



The project is supported by the Circular Bio-based Europe Joint Undertaking and its members. Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or CBE JU. Neither the European Union nor the CBE JU can be held responsible for them.



#### **IRIS TECHNOLOGY SOLUTIONS**





#### Who we are

IRIS Technology Solutions S.L. is a Catalan SME with a global ambition

- Funded 2007
- 69 Employees
- 4.9M€ Turnover (2023)
- Deep Tech company specialized in Real-Time Process Monitoring and Industry Digitization
- Team of multidisciplinary and experienced photonics, software, telecommunications and data analytics experts







The new technology stack to digitally transform and connect your business



### **SMAC**

Tailor-made SMAC (Social, Mobile, Analytics and Cloud) solutions for Industry.

- Adapt business to stay competitive and relevant in Industry 4.0.
- Turnkey digital solutions tailored to your needs.
- **Digital tools:** AI, Decision Support Systems, Digital Twins (in-silico process simulations).
- **Smart sensors:** Transform your process monitoring data into valuable insights.
- Recent circular economy EU projects: BIORADAR, PRESERVE, CIRCULAR FOODPACK, MERLIN.







- Circular Economy, Biobased systems, process and supply chains
- Industrial environmental impact assessment and reduction
- Leverage LCA (Life Cycle Assessment) data



Empowering industry and stakeholders so they can evaluate and compare their own environmental impact (Self Assessment Tool), providing information of where to focus to optimize

- Data availability
  - Real use case data from Fertilizer, Textile and Packaging sectors
  - Realistic synthetic data generated from real data using advanced statistics
- **Benchmarking:** energy use, water consumption, carbon emission, land use, ...
- Advanced data analytics with AI and machine learning









Combines real data results from Bioradar project sectors (Fertilizer, Textile and Packaging) with synthetic datasets to train the Al-driven benchmarking and analytics platform

- The data repository has been consolidated with a complete set of datasets for the fertilizer, textile and packaging sectors (LCA analysis)
  - The synthetic data generator performs an automatic statistical analysis of the real data (seed cases, e.g. all fertilizer, fertilizer feather meal, ..) and then generates the synthetic data from it.

0

This approach uses top-notch statistical/mathematical techniques to generate realistic synthetic data Advanced statistics – uses seed data cross-correlations, means and standard deviations as input to a Monte Carlo simulation using Eigenvectors and matrix transformations to produce the simulated data.



#### **DATA REPOSITORY**

0

| BORADAR                                     | BENCHMARKING | USE CASES | FILE REPOSITORY |        |
|---------------------------------------------|--------------|-----------|-----------------|--------|
| All your saved PUBLIC files:                |              |           |                 |        |
| synthetic-data-2025-03-12-1427.xlsx         |              |           |                 | ¥ 🔟    |
| All your saved PRIVATE files:               |              |           |                 |        |
| raw-use-cases-data-2025-03-10-1034.xlsx     |              |           |                 | * 🔟    |
|                                             |              |           |                 |        |
| ⚠ Select a file                             |              |           |                 |        |
| * At the moment we only support .xlsx files |              |           |                 |        |
|                                             |              |           |                 | Upload |
|                                             |              |           |                 |        |
|                                             |              |           |                 |        |
|                                             |              |           |                 |        |



#### **DATA REPOSITORY**



| BIOF              | ADAR            |         | BENCHMARKING | USE CASES<br>● | FILE REPOSITORY |                                                 |
|-------------------|-----------------|---------|--------------|----------------|-----------------|-------------------------------------------------|
| Fertilizers       | Packaging       | Textile |              |                |                 |                                                 |
| Build synthetic o | data Observatio |         |              |                |                 | SELECT: 4 OF 4 PRODUCTS Expand all Collapse all |
| Compost           |                 |         |              |                |                 | SELECT: 3 OF 3 USE CASES                        |
| Feather Mea       | I               |         |              |                |                 | SELECT: 5 OF 5 USE CASES                        |
| Wood Vineg        | ar              |         |              |                |                 | SELECT: 5 OF 5 USE CASES                        |
| Algea             |                 |         |              |                |                 | SELECT: 4 OF 4 USE CASES                        |
|                   |                 |         |              |                |                 |                                                 |



#### **DATA REPOSITORY**



|           | BIOR                         | ADAR                          | 2                                   |                                           |                                    | BEN                                        | ICHMARI                         | KING                                    | USE CASE                               | S F           | ILE REPO                          | SITORY                                        |                                                 |                              |                                                      |                           |           |  |
|-----------|------------------------------|-------------------------------|-------------------------------------|-------------------------------------------|------------------------------------|--------------------------------------------|---------------------------------|-----------------------------------------|----------------------------------------|---------------|-----------------------------------|-----------------------------------------------|-------------------------------------------------|------------------------------|------------------------------------------------------|---------------------------|-----------|--|
| Fertilize | ers                          | Packagi                       | ng                                  | Textile                                   |                                    |                                            |                                 |                                         |                                        |               |                                   |                                               |                                                 |                              |                                                      |                           |           |  |
| Build sy  | ynthetic da<br>D <b>OST</b>  | ta Obse                       | ervatio<br>O                        |                                           |                                    |                                            |                                 |                                         |                                        |               |                                   |                                               |                                                 | E<br>S                       | SELECT: 4 OF 4<br><b>kpand all</b>                   | PRODUCT<br>Collapse a     | rs<br>all |  |
| Use case  | Acidification<br>(mol H+ eq) | Climate change<br>(kg CO2 eq) | Ecotoxicity<br>freshwater<br>(CTUe) | Eutrophication<br>freshwater<br>(kg P eq) | Eutrophication<br>marine (kg P eq) | Eutrophication<br>terrestrial<br>(kg P eq) | Human toxicity<br>cancer (CTUh) | Human<br>toxicity non-<br>cancer (CTUh) | lonising<br>radiation<br>(kBq U235 eq) | Land use (Pt) | Ozone depletion<br>(kg CFC-11 eq) | Particulate<br>matter (Disease<br>incidences) | Photo-chemical<br>O3 formation<br>(kg NMVOC eq) | Resources<br>use fossil (MJ) | Resources<br>Use mineral<br>and metals<br>(kg SB eq) | Water use<br>(m3 Word eq) |           |  |
| case 1    | 2.5647                       | 105.0319                      | 477.6966                            | 0.0302                                    | 1.0419                             | 11.884                                     | 4.25e-7                         | 0.0000434                               | -10.7                                  | 162.4148      | 2.90e-7                           | 0.0000201                                     | 0.5705                                          | -18.8                        | 0.0000119                                            | -2.49                     |           |  |
| case 2    | 2.4375                       | 99.9969                       | 434.9719                            | 0.0058                                    | 1.0219                             | 11.5126                                    | 3.95e-7                         | 0.0000405                               | -5.65                                  | 134.1838      | 2.83e-7                           | 0.0000192                                     | 0.5946                                          | -56.7                        | 0.00000809                                           | -8.48                     |           |  |
| case 3    | 2.4956                       | 115.4089                      | 478.6048                            | 0.0296                                    | 1.0378                             | 11.5795                                    | 3.96e-7                         | 0.0000406                               | -12.1                                  | 100.9094      | 3.18e-7                           | 0.0000173                                     | 0.6105                                          | 78.3872                      | 0.00000869                                           | -4.50                     |           |  |

Feather Meal

SELECT: 5 OF 5 USE CASES



|                       | BORADAR                      |                               |                                     |                                           |                                    |                                            |                                 | KING                                    | USE CASES                                                                                         | 5 F                                                    | ILE REPO                          | SITORY                                          |                                                 |                              |                                                      |                           |  |
|-----------------------|------------------------------|-------------------------------|-------------------------------------|-------------------------------------------|------------------------------------|--------------------------------------------|---------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------|-------------------------------------------------|-------------------------------------------------|------------------------------|------------------------------------------------------|---------------------------|--|
| Fertilize<br>Build sy | ers<br>ynthetic da           | Packagi                       |                                     |                                           |                                    |                                            |                                 | Recent                                  | download<br>ynthetic-data-<br>15 KB + Done<br>rea-clustering<br>715 B • 47 minut<br>nload history | history<br>2025-03-20-1502.<br>response.json<br>es ago | X<br>xlsx                         | SELECT: 4 OF 4 PRODUCTS Expand all Collapse all |                                                 |                              |                                                      |                           |  |
| Comp                  | ost                          |                               |                                     |                                           |                                    |                                            |                                 |                                         |                                                                                                   |                                                        | SELECT: 3 OF 3 USE CASES          |                                                 |                                                 |                              |                                                      |                           |  |
| Use case              | Acidification<br>(mol H+ eq) | Climate change<br>(kg CO2 eq) | Ecotoxicity<br>freshwater<br>(CTUe) | Eutrophication<br>freshwater<br>(kg P eq) | Eutrophication<br>marine (kg P eq) | Eutrophication<br>terrestrial<br>(kg P eq) | Human toxicity<br>cancer (CTUh) | Human<br>toxicity non-<br>cancer (CTUh) | lonising<br>radiation<br>(kBq U235 eq)                                                            | Land use (Pt)                                          | Ozone depletion<br>(kg CFC-11 eq) | Particulate<br>matter (Disease<br>incidences)   | Photo-chemical<br>O3 formation<br>(kg NMVOC eq) | Resources<br>use fossil (MJ) | Resources<br>Use mineral<br>and metals<br>(kg SB eq) | Water use<br>(m3 Word eq) |  |
| case 1                | 2.5647                       | 105.0319                      | 477.6966                            | 0.0302                                    | 1.0419                             | 11.884                                     | 4.25e-7                         | 0.0000434                               | -10.7                                                                                             | 162.4148                                               | 2.90e-7                           | 0.0000201                                       | 0.5705                                          | -18.8                        | 0.0000119                                            | -2.49                     |  |
| case 2                | 2.4375                       | 99.9969                       | 434.9719                            | 0.0058                                    | 1.0219                             | 11.5126                                    | 3.95e-7                         | 0.0000405                               | -5.65                                                                                             | 134.1838                                               | 2.83e-7                           | 0.0000192                                       | 0.5946                                          | -56.7                        | 0.00000809                                           | -8.48                     |  |
| case 3                | 2.4956                       | 115.4089                      | 478.6048                            | 0.0296                                    | 1.0378                             | 11.5795                                    | 3.96e-7                         | 0.0000406                               | -12.1                                                                                             | 100.9094                                               | 3.18e-7                           | 0.0000173                                       | 0.6105                                          | 78.3872                      | 0.00000869                                           | -4.50                     |  |

Feather Meal

SELECT: 5 OF 5 USE CASES



#### **SYNTHETIC DATA GENERATOR**







|              | Climate       |              | Eutrophicati |              | Eutrophicati<br>on, | Human        | Human          | lonising<br>radiation, |               | Ozone      | Particulate | Photochemi<br>cal ozone<br>formation, |              | Resource     |                       |
|--------------|---------------|--------------|--------------|--------------|---------------------|--------------|----------------|------------------------|---------------|------------|-------------|---------------------------------------|--------------|--------------|-----------------------|
| cidification | Change -      | Ecotoxicity, | on,          | Eutrophicati | terrestrial         | toxicity,    | toxicity, non- | human                  |               | depletion  | matter      | human                                 | Resource     | use, mineral | Water use             |
| Mole of H+   | total [kg CO2 | freshwater - | freshwater   | on, marine   | [Mole of N          | cancer -     | cancer -       | health [kBq            |               | [kg CFC-11 | [Disease    | health [kg                            | use, fossils | and metals   | [m <sup>3</sup> world |
| q.]          | eq.]          | total [CTUe] | [kg P eq.]   | [kg N eq.]   | eq.]                | total [CTUh] | total [CTUh]   | U235 eq.]              | Land Use [Pt] | eq.]       | incidences] | NMVOC eq.]                            | [MJ]         | [kg Sb eq.]  | equiv.]               |
| 0.01537      | 8.1555        | 13.155       | 0.00035003   | 0.0048705    | 0.0531              | 6.068E-10    | 5.199E-08      | 0.39755                | 6.583         | 7.0715E-13 | 1.147E-07   | 0.0138225                             | 131.765      | 3.0015E-05   | 0.3225                |
| 0.00923481   | 11.2352196    | 17.175624    | 0.00048363   | 0.00673095   | 0.07339768          | 7.8234E-10   | 6.7472E-08     | 0.4998538              | 8.36790165    | 9.2327E-13 | 8.245E-08   | 0.018353                              | 182.76589    | 4.0567E-05   | 0.31183409            |

| Acidific     | ation (terre | mate Chan | xicity (Freshw | oxicity (Ma | icity (Terre | cation (Fres | hication (M | an Toxicity (Car | oxicity (nor | nising Radiatio | Land Use | Dzone depletion | iculate ma | 103 formation | 3 formation | rces Use (F | rces Use (N | Water Use |
|--------------|--------------|-----------|----------------|-------------|--------------|--------------|-------------|------------------|--------------|-----------------|----------|-----------------|------------|---------------|-------------|-------------|-------------|-----------|
| Acidificatio | 1            |           |                |             |              |              |             |                  |              |                 |          |                 |            |               |             |             |             |           |
| Climate Ch   | 0.743684     | 1         |                |             |              |              |             |                  |              |                 |          |                 |            |               |             |             |             |           |
| Ecotoxicity  | -0.62274     | -0.35735  | 1              |             |              |              |             |                  |              |                 |          |                 |            |               |             |             |             |           |
| Ecotoxicity  | -0.6362      | -0.35805  | 0.9996326      | 1           |              |              |             |                  |              |                 |          |                 |            |               |             |             |             |           |
| Ecotoxicity  | -0.16366     | -0.25066  | 0.8123401      | 0.797636    | 1            |              |             |                  |              |                 |          |                 |            |               |             |             |             |           |
| Eutrophica   | 0.527825     | -0.15579  | -0.3189129     | -0.33849    | 0.243929     | 1            |             |                  |              |                 |          |                 |            |               |             |             |             |           |
| Eutrophica   | 0.48093      | -0.16967  | -0.1471444     | -0.16822    | 0.419159     | 0.982285     | 1           |                  |              |                 |          |                 |            |               |             |             |             |           |
| Human To     | -0.64984     | -0.19189  | 0.94657214     | 0.95154     | 0.621719     | -0.59837     | -0.44344    | 1                |              |                 |          |                 |            |               |             |             |             |           |
| Human To     | -0.64065     | -0.37187  | 0.99969803     | 0.999858    | 0.801257     | -0.32853     | -0.15859    | 0.947753282      | 1            |                 |          |                 |            |               |             |             |             |           |
| Ionising Ra  | 0.498402     | -0.15008  | -0.1550384     | -0.17639    | 0.416598     | 0.982187     | 0.999718    | -0.448303887     | -0.16694     | 1               |          |                 |            |               |             |             |             |           |
| Land Use     | 0.573945     | -0.07929  | -0.2611473     | -0.28178    | 0.320436     | 0.991916     | 0.991954    | -0.539981405     | -0.27308     | 0.993352096     | 1        |                 |            |               |             |             |             |           |
| Ozone dep    | -0.35471     | -0.42785  | -0.1894626     | -0.19066    | -0.33911     | -0.16902     | -0.24769    | -0.112910062     | -0.18186     | -0.24764474     | -0.25644 | 1               |            |               |             |             |             |           |
| Particulate  | 0.999677     | 0.741226  | -0.6283355     | -0.64204    | -0.16884     | 0.526103     | 0.477867    | -0.653316337     | -0.64633     | 0.495592563     | 0.571083 | -0.33199932     | 1          |               |             |             |             |           |
| Photocher    | -0.64137     | -0.22756  | 0.71984511     | 0.721608    | 0.381337     | -0.6543      | -0.55165    | 0.837588256      | 0.720944     | -0.55128354     | -0.6317  | 0.409631234     | -0.63076   | 1             |             |             |             |           |
| Photocher    | -0.95452     | -0.76496  | 0.65978069     | 0.666682    | 0.279602     | -0.45093     | -0.39057    | 0.669600633      | 0.673327     | -0.4045077      | -0.49246 | 0.512820915     | -0.94816   | 0.77082044    | 1           |             |             |           |
| Resources    | -0.47076     | 0.018679  | 0.88624984     | 0.888395    | 0.615204     | -0.60509     | -0.4473     | 0.969922585      | 0.88246      | -0.44638911     | -0.52792 | -0.13942364     | -0.47223   | 0.845962217   | 0.523846    | 1           |             |           |
| Resources    | 0.572657     | -0.02244  | -0.1013702     | -0.12517    | 0.491614     | 0.938106     | 0.974873    | -0.373334902     | -0.1173      | 0.979144596     | 0.969254 | -0.26688647     | 0.571462   | -0.45636458   | -0.44299    | -0.32813    | 1           |           |
| Water Use    | 0.570202     | -0.11929  | -0.4932855     | -0.51062    | 0.047508     | 0.980113     | 0.925685    | -0.742341317     | -0.50088     | 0.92610909      | 0.954968 | -0.08726119     | 0.569915   | -0.74188961   | -0.51042    | -0.74834    | 0.865585    | 1         |



VALIDATION: compare averages, standard deviations and cross correlations with target statistics



LCA DATA

**Statistics:** 

Mean

.

.

Minimum

2° Quartile

3° Quartile

Maximum

#### **SYNTHETIC DATA GENERATOR**







- Trains on synthetic datasets and data from use-cases
- Allows users to compare their cases with real and synthetic cases
- The user can upload their own case (or cases) and perform the benchmarks indicated in the first two points.





- The user can now select a case as «reference case» (e.g. case 1 feather meal, fertilizer) and compare it with other cases (e.g. other feather meal cases)
- Allows the user to benchmark a case against the statistically significant cases (based on total scores) from the simulated data (five cases representing the max, min, average, cuartiles)



|                      | BORADAR                      |                               |                                     |                                           |                                    | BE                                         | BENCHMARKING USE CASES          |                                         |                                        |               | FILE F                            | REPOSITORY                                    | ,<br>                                           |                              |                                                      | (                         |              |
|----------------------|------------------------------|-------------------------------|-------------------------------------|-------------------------------------------|------------------------------------|--------------------------------------------|---------------------------------|-----------------------------------------|----------------------------------------|---------------|-----------------------------------|-----------------------------------------------|-------------------------------------------------|------------------------------|------------------------------------------------------|---------------------------|--------------|
| Fertiliz             | ers                          | Pacl                          | kaging                              | Text                                      | tile                               |                                            |                                 |                                         |                                        |               |                                   |                                               |                                                 |                              |                                                      |                           |              |
| Products<br>Wood Vin | egar                         | •                             | Base line u                         | se case                                   | •                                  |                                            |                                 |                                         |                                        |               | Base line                         | Closest ma                                    | atch Sec                                        | cond closes                  | t match                                              | Third cl                  | osest match  |
|                      |                              |                               |                                     |                                           |                                    |                                            |                                 |                                         |                                        |               |                                   |                                               | _                                               | Recomme                      | nder output                                          | : 5                       | Score charts |
| Use case             | Acidification<br>(mol H+ eq) | Climate change<br>(kg CO2 eq) | Ecotoxicity<br>freshwater<br>(CTUe) | Eutrophication<br>freshwater<br>(kg P eq) | Eutrophication<br>marine (kg P eq) | Eutrophication<br>terrestrial<br>(kg P eq) | Human toxicity<br>cancer (CTUh) | Human<br>toxicity non-<br>cancer (CTUh) | lonising<br>radiation<br>(kBq U235 eq) | Land use (Pt) | Ozone depletion<br>(kg CFC-11 eq) | Particulate<br>matter (Disease<br>incidences) | Photo-chemical<br>O3 formation<br>(kg NMVOC eq) | Resources<br>use fossil (MJ) | Resources<br>Use mineral<br>and metals<br>(kg SB eq) | Water use<br>(m3 Word eq) | Score        |
| case 1               | 0.0006                       | 0.9077                        | 2.0142                              | 6.64e-7                                   | 0.0002                             | 0.0017                                     | 9.02e-11                        | 5.86e-8                                 | 0.1122                                 | 1.1764        | 8.45e-15                          | 6.61e-9                                       | 0.0043                                          | 5.7245                       | 9.36e-8                                              | 0.0406                    | 111,205.5601 |
| case 2               | 0.0006                       | 0.2403                        | -1.24                               | 7.97e-7                                   | 0.0002                             | 0.0021                                     | 5.43e-12                        | -1.72e-10                               | 0.1123                                 | 1.2222        | 8.49e-15                          | 4.91e-9                                       | 0.0003                                          | 0.5289                       | 8.17e-8                                              | 0.1958                    | 81,638.957   |
| case 3               | 0.0009                       | 0.106                         | 0.6889                              | 0.00000119                                | 0.0003                             | 0.0029                                     | 2.55e-11                        | 1.15e-9                                 | 0.1477                                 | 1.608         | 8.27e-15                          | 7.62e-9                                       | 0.0005                                          | 2.3745                       | 9.28e-8                                              | 0.3529                    | 118,763.1113 |
| case 4               | 0.0012                       | 1.2693                        | -1.56                               | 0.00000123                                | 0.00000923                         | -8.67e-7                                   | -2.50e-11                       | -3.94e-10                               | 0.1474                                 | 1.6909        | 8.26e-15                          | 1.08e-8                                       | -0.0000153                                      | -0.0703                      | 8.75e-8                                              | 0.4073                    | 110,396.0968 |
| case 6               | 0.0152                       | -0.302                        | 1.268                               | 0.0045                                    | 0.0001                             | 0.0012                                     | 0.00000590                      | 0.0003                                  | 0.1422                                 | 1.5302        | 4.59e-9                           | 0.00000619                                    | 0.0003                                          | 1.4758                       | 0.006                                                | 0.3492                    | 108,822.02   |

Disclosure or reproduction without prior permission of BioRADAR is prohibited.













Advanced data analytics on LCA use case data

**Clustering and decision tree** 

The user selects a set of data, then chooses the «clustering» option.

The clustering clusters the data into the optimum number of clusters

The user can inspect the case to cluster assignments

This approach solves a key issue, labelling the raw data for supervised learning, by using the cluster id as the class label Next, the user chooses the «decision tree» option.

The decision tree is a supervised machine learning method which uses the cluster ids as training labels.

The user can inspect the decision tree to see the rules generated for each cluster.





## Clustering





The platform will be accessible to general users at the end of 2025

@

https://bioradar.iris-eng.com





# Thank you !

Contact:

David F. Nettleton: *A.I., Digital Twin, DSS lead IRIS Technology Solutions Email: david.nettleton@iris-eng.com* 

